Part Number Hot Search : 
ID243E01 SPH502 MIW5046 H2323 07180 LM340 S00DC13 33112
Product Description
Full Text Search
 

To Download IRFP17N50L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFP17N50L 07/18/03 www.irf.com 1 smps mosfet hexfet   power mosfet to-247ac features and benefits ? 

 
 


 
   


   ?  
 

 



  ? 
!
  

 
  ? "
 
  
 

 
     applications ? 
  
 
#$ ? % 


$ 
 ? &   
$ 
 ? # 
'   
   v dss r ds(on) typ. trr typ. i d 500v 0.28 ? 170ns 16a absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 16 i d @ t c = 100c continuous drain current, v gs @ 10v 11 a i dm pulsed drain current  64 p d @t c = 25c power dissipation 220 w linear derating factor 1.8 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  13 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) mounting torque, 6-32 or m3 screw diode characteristics symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 16 mosfet symbol (body diode) a showing the i sm pulsed source current ??? ??? 64 integral reverse (body diode)  p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 16a, v gs = 0v  t rr reverse recovery time ??? 170 250 ns t j = 25c, i f = 16a ??? 220 330 t j = 125c, di/dt = 100a/s  q rr reverse recovery charge ??? 470 710 nc t j = 25c, i s = 16a, v gs = 0v  ??? 810 1210 t j = 125c, di/dt = 100a/s  i rrm reverse recovery current ??? 7.3 11 a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) 10lb  in (1.1n  m) pd - 94322a

2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)   starting t j = 25c, l = 3.0mh, r g = 25 ? , i as = 16a. (see figure 12).  i sd = 16a, di/dt 347a/s, v dd v (br)dss , t j 150c.   pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss . static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 500 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.60 ??? v/c r ds(on) static drain-to-source on-resistance ??? 0.28 0.32 ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 50 a ??? ??? 2.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 1.4 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 11 ??? ??? s q g total gate charge ??? ??? 130 q gs gate-to-source charge ??? ??? 33 nc q gd gate-to-drain ("miller") charge ??? ??? 59 t d(on) turn-on delay time ??? 21 ??? t r rise time ??? 51 ??? ns t d(off) turn-off delay time ??? 50 ??? t f fall time ??? 28 ??? c iss input capacitance ??? 2760 ??? c oss output capacitance ??? 325 ??? c rss reverse transfer capacitance ??? 37 ??? c oss output capacitance ??? 3690 ??? pf v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 84 ??? v gs = 0v, v ds = 400v, ? = 1.0mhz c oss eff. effective output capacitance ??? 159 ??? c oss eff. (er) effective output capacitance ??? 120 ??? (energy related) avalanche characteristics symbol parameter typ. units e as si n gl e p u l se a va l anc h e e ner g y  ??? mj i ar avalanche current   ??? a e ar r epet i t i ve a va l anc h e e ner g y  ??? mj thermal resistance symbol parameter typ. units r jc junction-to-case ??? r cs case-to-sink, flat, greased surface 0.50 c/w r ja junction-to-ambient ??? 62 max. 0.56 ??? v ds = 25v ? = 1.0mhz, see fig. 5 16 22 max. 390 v gs = 0v,v ds = 0v to 400v  i d = 16a r g = 7.5 ? v gs = 10v, see fig. 14a & 14b  v gs = 0v i d = 16a v ds = 400v v gs = 10v, see fig. 7 & 15  v dd = 250v v gs = 30v f = 1mhz, open drain conditions v ds = 50v, i d = 9.9a v gs = -30v v ds = v gs , i d = 250a v ds = 500v, v gs = 0v v ds = 400v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 9.9a 

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v = 50v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 150 c j t = 25 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 16a 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 20s pulse width tj = 25c vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 20s pulse width tj = 150c vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v

4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd fig 8. typical source-drain diode forward voltage 0.1 1 10 100 0.2 0.6 0.9 1.3 1.6 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 150 c j t = 25 c j fig 7. typical gate charge vs. gate-to-source voltage 0 30 60 90 120 150 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 16a v = 100v ds v = 250v ds v = 400v ds fig 6. typ. output capacitance stored energy vs. v ds 0 100 200 300 400 500 600 v ds, drain-to-source voltage (v) 0 5 10 15 20 e n e r g y ( j )

www.irf.com 5 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %          + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 0 4 8 12 16 20 t , case temperature ( c) i , drain current (a) c d 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)

6 www.irf.com fig 14a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 14b. unclamped inductive waveforms t p v (br)dss i as d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15a. gate charge test circuit q g q gs q gd v g charge   fig 15b. basic gate charge waveform fig 13. maximum avalanche energy vs. drain current 25 50 75 100 125 150 0 160 320 480 640 800 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 7a 10a 16a fig 12. maximum safe operating area 0.1 1 10 100 1000 10 100 1000 10000 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms

www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 16. for n-channel hexfet   power mosfets    
     
              ?     ?  ?    !" ## ? $  
%! !%   ?  &' !  ? ( !)  ?  &* ! %!    

8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/03 
     
    
         lead assignments notes: - d - 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 3x 0.80 (.031) 0.40 (.016) 2.60 (.102) 2.20 (.087) 3.40 (.133) 3.00 (.118) 3x 0.25 (.010) m c a s 4.30 (.170) 3.70 (.145) - c - 2x 5.50 (.217) 4.50 (.177) 5.50 (.217) 0.25 (.010) 1.40 (.056) 1.00 (.039) 3.65 (.143) 3.55 (.140) d mm b - a - 15.90 (.626) 15.30 (.602) - b - 1 23 20.30 (.800) 19.70 (.775) 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2x 2x 5.45 (.215) 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-247-ac. 1 - gate 2 - drain 3 - source 4 - drain notes : t his part marking information applies to devices produced after 02/26/2001 example: as s e mb le d on ww 35, 2000 lot code 5657 wit h as s e mb l y this is an irfpe30 in the assembly line "h" 035h logo int e rnat ional rectifier irf pe30 lot code as s e mb l y 56 57 part number dat e code year 0 = 2000 week 35 line h lot code ww = we e k yy = year notes : this part markin g information applies to devices produced before 02/26/2001 or for example: this is an irfpe30 with assembly lot code 3a1q assembly logo rect if ier i nt e r nat i onal 3a1q irfpe30 part number (yyww) dat e code 9302 parts manufactured i n gb . to-247ac package is not recommended for surface mount application.


▲Up To Search▲   

 
Price & Availability of IRFP17N50L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X